
Retina: Analyzing 100GbE Traffic on Commodity Hardware
Gerry Wan

Stanford University
Fengchen Gong
Stanford University

Tom Barbette
UCLouvain

Zakir Durumeric
Stanford University

ABSTRACT
As network speeds have increased to over 100Gbps, operators and
researchers have lost the ability to easily ask complex questions of
reassembled and parsed network traffic. In this paper, we introduce
Retina, a software framework that lets users analyze over 100Gbps
of real-world traffic on a single server with no specialized hardware.
Retina supports running arbitrary user-defined analysis functions
on a wide variety of extensible data representations ranging from
raw packets to parsed application-layer handshakes. We introduce
a novel filtering mechanism and subscription interface to safely
and efficiently process high-speed traffic. Under the hood, Retina
implements an efficient data pipeline that strategically discards
unneeded traffic and defers expensive processing operations to pre-
serve computation for complex analyses. We present the framework
architecture, evaluate its performance on production traffic, and
explore several applications. Our experiments show that Retina
is capable of running sophisticated analyses at over 100Gbps on
a single commodity server and can support 5–100× higher traffic
rates than existing solutions, dramatically reducing the effort to
complete investigations on real-world networks.

CCS CONCEPTS
• Networks → Network monitoring; Network measurement;

KEYWORDS
Traffic Analysis, Internet Measurement, 100GbE.

ACM Reference Format:
Gerry Wan, Fengchen Gong, Tom Barbette, and Zakir Durumeric. 2022.
Retina: Analyzing 100GbE Traffic on Commodity Hardware. In ACM SIG-
COMM 2022 Conference (SIGCOMM ’22), August 22–26, 2022, Amsterdam,
Netherlands. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3544216.3544227

1 INTRODUCTION
Network operators and researchers routinely need to investigate
production network traffic. However, over the past few years, net-
work speeds have grown to 100+Gbps, outpacing the performance
of traditional analysis tools. As a result, seemingly simple, yet
increasingly important questions that require analyzing reassem-
bled flows or parsed application-layer data have become extremely

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-9420-8/22/08. . . $15.00
https://doi.org/10.1145/3544216.3544227

difficult to answer (e.g., “What is the packet loss of traffic from
YouTube?” or “How much traffic is sent unencrypted and why?”).

Many solutions have been proposed for analyzing high-speed
network traffic, but few have seen real-world adoption. This is in
part because a trade-off remains between highly-optimized packet
processing frameworks and the expressiveness and ease-of-use
needed to quickly answer operational questions. Fast packet proces-
sors often lack the flow-level [8, 37, 45, 47, 64, 96] and application-
level semantics [55, 67, 87] needed for common analysis tasks. Other
systems, like high-performance intrusion detection systems and
flow monitors, require niche hardware setups [43, 100], and/or are
limited to fixed analysis functions [80, 94, 99, 100].

As a result, operators and researchers continue to attempt to
scale older systems like Zeek (formerly Bro) [68] and Snort [73]—
tools that expose expressive interfaces and high-level network ab-
stractions [19, 22, 29, 30, 33, 40, 50–52, 82–84, 101]—or build cus-
tom analysis solutions using low-level libraries like DPDK and
PF_RING [16, 38, 39, 80, 85, 94]. Unfortunately, older platforms
scale inefficiently to today’s high-speed environments, and custom-
built solutions are time consuming and error prone to develop. For
example, prior work estimates that Zeek requires over 100 CPU
cores to process 100Gbps traffic, assuming perfect scaling [76].

In this paper, we present Retina, a software framework that
supports 100+Gbps traffic analysis on a single server with no spe-
cialized hardware. Retina is designed to enable safely and easily
answering complex questions about entire networks or uplinks
rather than continually performing deep inspection of all network
traffic. Retina dramatically reduces the effort required to understand
high-speed networks by allowing users to subscribe to packets, re-
assembled connections, or parsed application-layer sessions using a
simple filter and callback interface. For example, Retina can log the
server names and ciphersuites of all TLS handshakes with “.com”
domains on over 160 Gbps of network traffic using 8 cores, a stan-
dard server NIC, and 10 lines of Rust code. Retina’s design and
performance is based on several insights:
(1) In contrast to fast packet processing platforms and intrusion

detection systems, analysis questions typically focus on only a
subset of packets and flows (e.g., [17, 22, 29, 30, 101]). By opti-
mizing the analysis pipeline to discard out-of-scope traffic as
early and as often as possible, we can dramatically reduce the
computation spent reassembling, parsing, and processing net-
work traffic, bringing 100+Gbps visibility within range. Retina
decomposes user-friendly filters into each processing step and
uses static code generation to compile filters into performant
native assembly.

(2) Many burdensome development tasks like load balancing, con-
nection tracking, stream reassembly, and application-layer pars-
ing can be automated. However, while techniques for optimiz-
ing these individual components are well-studied, naïvely glu-
ing them together results in redundant processing and data

https://doi.org/10.1145/3544216.3544227
https://doi.org/10.1145/3544216.3544227
https://doi.org/10.1145/3544216.3544227

transfer inefficiencies. For example, there is no reason to con-
tinue to buffer, copy, and reassemble TCP flows that contain
encrypted data if users are only analyzing cryptographic hand-
shakes. Retina’s processing pipeline is built on the principle
of lazy data reconstruction, where expensive operations are
deferred until the framework is confident that the operation is
needed to achieve the desired analysis result.

(3) Prior works have developed domain-specific languages and
custom APIs for network analysis [13, 45, 55, 63, 67, 68]. While
beneficial for security and performance, these interfaces in-
herently limit the analysis that can be performed. Inspired by
Tock [58] and NetBricks [66], Retina introduces a Rust-based
subscription programming model that allows users to write
arbitrary analysis code on a diverse set of data representations
at multiple layers of the networking stack. By leveraging Rust’s
compile-time guarantees, Retina can safely run complex analy-
ses with minimal run-time overhead.

We deploy Retina in a production network using a single commod-
ity server and 100GbE NIC, and we demonstrate the simplicity
with which users can answer diverse, meaningful questions about
real-world traffic at 100Gbps with zero packet loss. We are releas-
ing Retina under the Apache 2.0 license to enable operators and
researchers to more easily ask questions of high-speed networks at
https://github.com/stanford-esrg/retina.

2 DESIGN GOALS
We aim to build an analysis solution that network operators and
researchers can deploy and use in practice. To ensure we meet
real-world demands, we start by analyzing prior research studies
that employ passive traffic analysis (e.g., [17, 22, 29, 30, 51, 83, 95,
101]), consider our own research questions, and collect deployment
requirements from operators, whichwe use to develop the following
goals and design constraints:
Enable ComplexAnalysis. Our platformmust support arbitrar-
ily complex processing of individual packets, reassembled flows,
and parsed application-layer sessions. Domain-specific query in-
terfaces [13, 45, 63, 66] and specialized monitoring tools [23, 94,
99, 100] are performant but do not accommodate many real-world
needs in practice. For instance, fixed function network analyzers
fall short when applied to unanticipated research questions, such
as uncovering nuanced anomalies in cryptographic operations or
understanding previously unknown vulnerabilities [30]. In other
domains, users should be able to run custom machine learning
models on raw traffic [49], or extract user-defined features to infer
application performance [16]. Our framework should also enable
easily focusing on specific subsets of traffic (e.g., connections to
YouTube and Netflix [17], or all SMTP sessions).
100+Gbps Performance. Many networks that operators and re-
searchers seek to analyze operate at 100+Gbps [15]. Countless em-
pirical studies have relied on historical traces from sub-10GbE traf-
fic collectors like the CAIDA equinix-chicago and equinix-sanjose
vantage points [10, 48, 54, 71, 95]. However, for sustained 100+Gbps
traffic, it is difficult and often infeasible to store all packets to disk
for after-the-fact analysis [18], especially for longitudinal studies
that require weeks to months of data. In addition, IXPs and other
deployment locations are frequently space and power constrained.

1 #[filter("tls.sni matches '.*\\.com$'")]
2 fn main() -> Result<()> {
3 let cfg = load_config();
4 let callback = |hs: TlsHandshake| {
5 log::info!("TLS handshake with {} using {}",
6 hs.sni(), hs.cipher());
7 };
8 let mut runtime = Runtime::new(cfg, filter, callback)?;
9 Ok(runtime.run());
10 }

Figure 1: Example Traffic Subscription—Retina users subscribe to traffic
using a filter and Rust callback. Here, we show a subscription for parsed
TLS handshakes to all domains ending in “.com”.

Several ISPs that our team is working with have been able to pro-
vide only 1–2 rack units for analysis equipment. Our system must
support analyzing 100+Gbps links in real-time using a single 1RU
server and no external appliances.
Readily Deployable. Despite scalability issues [76, 100], tradi-
tional monitoring platforms like Zeek and Snort are popular due
to their expressiveness, relative ease-of-use, and simple deploy-
ment requirements. While prior works have improved packet pro-
cessing performance by offloading CPU intensive tasks to special-
ized hardware like SmartNICs [35, 62, 79], FPGAs [35, 74, 100] and
GPUs [43, 87], these devices require elaborate development cycles
that preclude many operators and researchers [5]. Our framework
must be readily deployable on commonly available hardware (e.g.,
“dumb” NICs), run in a standard software environment, and remain
easy to use without the need to learn specialized skills or program-
ming paradigms.
Security. Real-world network traffic can be unpredictable and
malicious [26, 68]. Vulnerabilities in processing code can be re-
motely exploited to expose sensitive network communications. Un-
fortunately, due to performance considerations, most monitoring
tools are written in low-level languages like C and C++, which
have allowed memory safety errors escalate into vulnerabilities
on production networks [24, 25, 27]. Our system needs to safely
perform internal framework operations (e.g., packet parsing and
stream reassembly) and enforce memory safety within user-defined
analysis functions such that individual experiments do not place
users at unnecessary risk.

While there has been much progress in each individual area, we
find that existing systems fulfill only a subset of our requirements.
Motivated by these observations and constraints, we set out to
develop a new system capable ofmeeting all of the above objectives.

3 RETINA ANALYSIS FRAMEWORK
We introduce Retina, a software framework that enables operators
and researchers to ask complex questions of high-speed traffic by
subscribing to filtered, reassembled, and parsed network data. For
example, Retina lets users subscribe to all TLS handshakes with
domains ending in “.com” and log the server names and cipher-
suites in under 10 lines of Rust code (Figure 1). In this scenario, the
framework automatically handles packet capture, load balancing,
connection tracking, TCP reassembly, TLS handshake parsing, and
flow filtering. Retina depends on only commonly available hard-
ware primitives and is implemented in Rust, which enables the
framework to isolate and secure user-defined analysis functions.

2

https://github.com/stanford-esrg/retina

3.1 System Overview
We observe that most analysis questions require fully processing
only a subset of Internet tra�c. By deferring computationally expen-
sive operations and discarding extraneous tra�c at each processing
step, we can dramatically reduce unnecessary computation such
that it is possible to answer questions on high-speed links without
restricting our analysis language or requiring specialized hardware.

Retina users subscribe to network tra�c by specifying a�lter
and acallback, which Retina compiles into a work-conserving pro-
cessing pipeline that (1) eagerly discards out-of-scope tra�c, and
(2) lazily reconstructs relevant network data (deferring expensive
operations until the framework determines they are necessary).
As shown in Figure 2, Retina decomposes subscription �lters into
multiple layers, each of which hierarchically reduces the tra�c
sent to subsequent processing stages. As packets arrive, Retina re-
constructs larger and more relevant segments of data up through
each layer while explicitly deferring data transfers, reassembly, and
application-layer parsing. This approach e�ciently retains desired
tra�c, while minimizing the work spent processing data that will
eventually be �ltered out. Retina abstracts away the �lter decom-
position and data reconstruction steps, allowing users to focus on
core analysis logic without worrying about hardware speci�cs or
low-level optimizations. We detail �lter decomposition (Figure 2,
left) in Section 4 and data processing (Figure 2, right) in Section 5.

3.2 Subscription Programming Model
Users interact with Retina by specifying a tra�c �lter and a Rust
callback function that receives network data in one of several ex-
tensible representations. Filters and data types registered with the
callback are independent, enabling users to subscribe to desired
tra�c while choosing the data representation most suitable for
their analysis (e.g., raw IP packets associated with TLS handshakes
with �net�ix.com�).

3.2.1 Accessible Filters.Filters let users easily focus on tra�c of
interest, while simultaneously allowing Retina to quickly discard
out-of-scope tra�c to save computation. Our �lter language is de-
signed to be expressive, semantically simple, and familiar to users.
While not identical, the syntax is inspired by Wireshark Display
Filters [90] and the Camus subscription language [56]. Filters are
de�ned as a logical expression of constraints on attributes of the
input data. Each constraint is either a binary predicate that com-
pares the value of an entity's attribute with a constant, or a unary
predicate that matches against the entity itself. We show the �lter
syntax in Table 1, along with several examples.

3.2.2 Expressive Callbacks.Rather than introducing a domain-
speci�c analysis language that potentially restricts functionality,
Retina presents an expressive callback interface in Rust that al-
lows users to safely write arbitrary analysis code in a standard
software development environment. Callbacks are registered with
a subscribable type that provides access to network data at one of
three abstraction levels corresponding to layers of the OSI model:

� Raw Packets (L2�3): Raw Ethernet frames or IP packets are
provided in the order received on the network.

Figure 2: Framework Architecture� Retina e�ciently processes tra�c
on high-speed networks by decomposing �lters into multiple layers that hi-
erarchically reduce tra�c sent to subsequent processing stages. At runtime,
data is reconstructed lazily to minimize computation on tra�c that will be
�ltered out.

Protocols h generic
Fields f generic
RHS values r int|string|ipv4|ipv6|int_range
Predicates p h|h.f = r|h.f < r|h.f in r|h.f matches r|...
Expressions e p|e 1 and e2|e 1 or e2|(e)|...

Examples ipv4.ttl > 64
ipv4 and (tls or ssh)
ipv6.addr in 3::b/125 and tcp
http.user_agent matches ' Firefox '

Table 1: Filter Syntax� Retina employs a Wireshark-inspired �lter syntax
that helps users control the type of tra�c processed. In contrast to prior
systems, identi�ers are are not hard-coded into the framework, but rather
are exposed by extensible protocol modules.

3

� Reassembled Connections (L4): Data from connections are
reassembled in sequence and delivered as fully reconstructed
byte-streams or connection records.

� Application-Layer Sessions (L5�7): Reassembled streams
are further parsed into protocol messages and presented to the
user as parsed application-layer data.

Our data model contrasts those used by many middlebox develop-
ment frameworks and intrusion detection systems, which expose
event-based interfaces that allow users to manipulate �ows or re-
spond to pre-de�ned network behaviors (e.g., TCP state transition,
triple duplicate ACK, etc.) [36, 55, 73]. We observe that this model
complicates many research and analysis tasks by requiring the user
to reason about complex network interactions and protocol-speci�c
dynamics that are better abstracted away by the framework. Retina
shifts the responsibility of managing protocol events and other
complexities from the user to the framework itself.

For example, we provide the L7 session abstraction needed to
make analyzing TLS handshakes as simple as writing a function
that takes a parsed TLS handshake as an argument (Figure 1). Fine-
grained L3 analyses (e.g., network classi�cation with packet bi-
naries [49]) can also be performed by subscribing to raw packets
while �ltering for connections to speci�c domains. We note that
even if Retina does not directly implement a particular data ab-
straction, subscribing to raw packets is equivalent to using a high-
speed packet analyzer with more advanced �ltering capabilities
thantcpdump. Users can still choose to run arbitrary analyses using
raw packets, or alternatively, extend the framework with new a
protocol or subscription module.

3.3 Framework Extensibility
Retina's �lter language and subscription data model are extensible.
Unlike existing �ltering techniques [61, 90] that have a �xed set of
allowable primitives hard-wired into the framework, Retina maps
�lter predicates to identi�ers exposed by a set of extensible proto-
col modules. Each module de�nes how to parse and reconstruct
incoming tra�c and exposes a set of protocol-speci�c �elds that
the framework can use for �ltering. Users can also create new sub-
scribable types (e.g., SSH handshake transcript, fully reconstructed
byte-stream, etc.) by implementing a new subscription module or
by modifying an existing one. We detail how modules are de�ned
in Appendix A.

4 FILTER DECOMPOSITION
Retina's tra�c �lters are not merely a convenience�they dramati-
cally increase performance by e�ciently discarding unneeded traf-
�c and connection state as early and as often as possible. Retina
applies �lters by decomposing a user-speci�ed �lter expression
into four components: (1) a NIC-compatible hardware packet �l-
ter, (2) a more expressive software packet �lter, (3) a connection
�lter, and (4) an application-layer session �lter. Each �lter hierar-
chically matches on incoming packets, connections, and sessions,
allowing Retina to drop out-of-scope tra�c at every processing
step. Hardware �lters are limited in complexity, but winnow down
tra�c at zero CPU cost, while the software �lters work in tandem
to reduce computation in subsequent stages of the data pipeline.
At compile time, Retina transforms each software sub-�lter into a

�xed sequence of conditionals that is statically veri�ed by the Rust
compiler for memory safety and correctness before being inlined at
its respective processing layer. This technique bakes the �lter logic
into the application binary as if it were hard-coded by a developer,
avoiding the overhead of interpreting �lters at runtime.

4.1 Generating Multi-Layer Filters
We represent �lter expressions as a predicate trie, of which input
data must match at least one root-to-leaf path to satisfy the �lter.
This intermediate representation is similar to the control �ow graph
model used in BPF [61] and NNStat [14], but is modi�ed to facilitate
multi-layer �lter decomposition and static code generation. For
instance, all nodes are restricted to a single parent to eliminate
ambiguity at compile time when generating the sub-�lters. This
structure also maps each node directly to a conditional statement in
Rust (rather than compiling to a limited instruction set [61]), which
increases �exibility to support new protocols and �lterable �elds.

To build the predicate trie, Retina �rst transforms the �lter ex-
pression into disjunctive normal form, creating a set ofpatternsthat
each consist of a conjunction of atomic predicates. Using metadata
from protocol modules that dictate how headers are encapsulated,
Retina expands and reorders each pattern such that packet headers
and application-layer protocols are parsed in sequence (due to the
potential for variable length headers). During trie construction,
we tag predicate nodes to indicate whether they apply to packet,
connection, or session predicates, and whether they terminate a
sub-�lter (i.e., is a leaf node in the sub-tree). Once the predicate
trie has been constructed, we group nodes into their respective sub-
�lters and perform an optimization pass to eliminate redundant
branches to speed up matching. We show an example in Figure 3.

Hardware Packet Filter. Retina automatically installs an on-
NIC hardware �lter to decrease load on the CPU. For narrow �lters,
this can dramatically reduce the volume of tra�c reaching software
with no external equipment. Most commodity NICs are capable of
some degree of �ow �ltering, but vary in terms of supported proto-
cols, operands, and complexity. As a result, manually programming
hardware rules requires signi�cant e�ort from the user to under-
stand limitations of di�erent NICs and vendor speci�c quirks [57].
Our framework abstracts this process away by expanding each �lter
predicate into a hardware �ow rule and dynamically validating its
compatibility with the user's device. Retina caches each validated
predicate and recombines them into a set of hardware rules that are
at leastas broad as the subscription �lter. We show the hardware
�lter in Figure 3 for a NIC that does not support the>=operand
in the predicatetcp.port >= 100 . The resulting hardware packet
�lter permits all TCP packets, but relies on the software packet
�lter to implement the remaining �lter logic.

Software Packet Filter. To generate the software packet �lter,
we leverageprocedural macros, a metaprogramming feature of Rust
that allows us to modify the syntax tree of the application source
code at compile time. As shown in Figure 3, each unary predicate
is converted to anif let statement1 to parse packet headers, and
each binary predicate maps to anif statement to match on �elds.

1In Rust,if let matches an expression to a pattern and gives access to the matched
value inside the body of the conditional, whereas a normalif statement simply runs
when the condition is true.

4

Figure 3: Filter Decomposition and Code Generation� We show how the �lter (ipv4 and tcp.port >= 100 and tls.sni ~' netflix ') or http is
decomposed and executed. Retina parses the speci�ed �lter expression into a predicate trie representation, and generates (1) a set of NIC-compatible �ow rules,
(2) a more expressive packet �lter, (3) a connection �lter, and (4) an application-layer session �lter. Flow rules are installed on the NIC, while the software
�lter functions are compiled and inlined at their respective processing layers. Native code generation can result in up to 3� higher throughputs over runtime
interpretation, depending on the �lter and tra�c (Appendix B). Note: we truncate full path names and other expansions for readability.

Retina uses the relevant protocol modules (Section 3.3) to generate
the actual parsing code and calls the appropriate accessor methods
de�ned in each module to evaluate the predicate. If a packet �lter
pattern is non-terminating (i.e., there are subsequent connection or
session-level predicates that must be applied downstream), we tag
any matching packets with the ID of the last matched node in the
trie to prevent redundant trie traversal in ensuing �lters. The gen-
erated �lter function is veri�ed by the Rust compiler to be memory
safe and syntactically correct, then inlined in the processing code
immediately after packet capture.

Connection Filter. The connection �lter evaluates predicates on
connections (e.g., L7 protocol), and serves to eliminate excess con-
nection state and stop unnecessary stream reassembly and protocol
parsing. This �lter is applied as soon as enough data has been ob-
served to identify the L7 protocol but before full L7 parsing occurs.
Like the packet �lter, the connection �lter maps predicate nodes
to a sequence of conditionals according to the predicate trie, and
returns a �lter result tagged with the deepest matched predicate
node ID. In Figure 3, we show the generated connection �lter code
that will discard all non-HTTP and non-TLS connections, as well
as TLS connections not destined for port 100 or greater.

Application-Layer Session Filter. The session �lter evaluates
predicates on application-layer elements (e.g., TLS version), work-
ing in conjunction with the connection �lter to reduce memory and
CPU cycles by discarding L7 data (or entire connections) that the
user is not interested in. Retina applies this �lter when a session
is fully parsed by branching from the deepest predicate node ID
matched in the pattern so far. If the connection had already matched
a terminal predicate (e.g., nodes 3 and 9 in Figure 3), the session
�lter simply returns a successful match. For performance, Retina
automatically declares lazily evaluated static variables for executing
regular expressions (e.g.,tls.sni ~' netflix '). This ensures that
all regular expressions in the �lter are compiled only once rather
than every time the �lter is applied.

We emphasize that Retina �lters are generated at compile time so
that Retina does not need to consider how to apply the �lter against

input tra�c at run time. This enables Retina to safely and e�ciently
discard out-of-scope tra�c, dramatically reducing computational
burden at each processing step.

5 DATA RECONSTRUCTION
In this section, we describe the design of Retina's runtime process-
ing pipeline, depicted on the right-hand side of Figure 2. At a high
level, Retina receives raw packets from the network and builds
increasingly larger segments of data up through each �ltering layer
before executing the callback with the user's subscription data. Be-
cause Retina is �subscription-aware�, it is able tolazily reconstruct
network tra�c. That is, we avoid redundant copying, reassembling,
and parsing of data destined for the user until we are sure that
it ful�lls the desired subscription. This approach minimizes any
wasted computation on tra�c that will be discarded by later �lters.

5.1 Stateless Packet Processing
Retina is designed to support modern multi-core architectures and
leverages commodity NIC hardware for initial packet �ltering and
load balancing at zero CPU cost. Ingress packets are processed
by the hardware �lter before being distributed among cores via
symmetric Receive Side Scaling (RSS) [93]. RSS is a well-known
technique that load balances tra�c with per-connection consis-
tency, avoiding cross-core data sharing and enabling near-linear
scaling by increasing core counts. RSS is implemented by most
commodity NICs [7] and works by hashing packet headers and
dispatching them to receive queues based on a redirection table
lookup. While symmetric RSS does not necessarily achieve perfect
load balancing, we �nd that on real-world tra�c, the number of
�ows tends to be well distributed among cores. More advanced
load balancing techniques (e.g., [7, 65]) can yield further scaling
improvements but are orthogonal to our work.

Since modern operating system kernels are unable to sustain
100 Gbps ingress tra�c rates [8], we use kernel-bypass (speci�cally,
DPDK [37]) to deliver raw packets from the NIC directly to user-
space memory. Retina assigns one CPU core per receive queue, and
each core polls its associated descriptor ring for packets. Packets

5

are immediately �ltered again in software to e�ciently discard
those that are unable to be �ltered in hardware (e.g., due to un-
supported header �elds or operands). If the user is subscribed to
packets with no need for connection or session �ltering, the call-
back is directly invoked at this stage to bypass further processing.
Otherwise, packets are forwarded to theConnection Tracker, which
continues processing them into larger and more relevant segments
for further analysis.

5.2 Stateful Connection Processing
Retina determines if stateful processing is needed based on the sub-
scription data type and the result of the packet �lter. Connection and
application-level tra�c subscriptions, as well as non-terminating
packet �lter matches (i.e., the packet only partially matched a �lter
pattern), require stateful processing to reassemble connections or
parse application-layer data. This is critical for a broad range of anal-
ysis tasks, ranging from identifying patterns across packet bound-
aries to investigating anomalies in cryptographic handshakes.

Connection Tracking. Retina uses per-core hash tables to man-
age connection state, an approach that has been shown to scale
independently of the o�ered tra�c load [41]. Each core tracks only
connections received from symmetric RSS, allowing tables to be
maintained independently and without cross-core synchronization.

Connections often fail to terminate gracefully on real-world net-
works [27], in part due to large-scale SYN scanning (e.g., ZMap
scans [31]). Around 65% of TCP connections observed on our net-
work consist of a single unanswered SYN, causing new connections
to arrive at a far higher rate than that of connection establishment
or termination. To prevent memory exhaustion from inactive con-
nections, we build upon a timer wheel [86] mechanism adapted to
accommodate modern network behaviors. Recent work as shown
that timer wheel based �ow deletion scales better than alternative
techniques without adding complexity to hash table insertions [41].

Retina employs hierarchical timer wheels based on empirical
observations: a short connection establishment timeout to expire
unanswered SYNs, and a longer inactivity timeout to remove estab-
lished inactive connections. Unanswered SYNs are treated as proper
connections and can be analyzed in the same manner as other con-
nections. Naturally, there is a trade-o� between timeout length and
analysis depth, as the framework may prematurely remove connec-
tions that have long intervals between packets. Our default values
of 5 seconds and 5 minutes, respectively, are chosen conservatively
based on the 99th percentile inactivity intervals measured on our
network (1 second from SYN to SYN-ACK, 163 seconds between
consecutive packets), though all timeouts are con�gurable to accom-
modate di�erent network environments and subscription types.

Light-Weight Stream Reassembly. Traditional approaches to
TCP reassembly involve allocating data bu�ers to hold packet pay-
loads as they arrive from the network [46, 67, 92]. While this design
provides a convenient stream abstraction for applications that re-
quire access to in-order bytes, it is wasteful in situations where fully
reconstructed byte-streams are not needed for every connection,
or only partially needed for some connections. For example, if a
user subscribes to TLS byte-streams with domains ending in �.com�,
it is wasteful to allocate stream bu�ers and copy bytes over until

the session �lter can verify that the server name indeed ends in
�.com�. Furthermore, prior work has shown that the vast majority of
TCP packets arrive in sequence order [26, 100], demonstrating that
large reassembled data bu�ers are unnecessary to support most
real-world networks. Indeed, our measurements of a large univer-
sity network show that 94% of �ows with at least two packets arrive
completely in order, while the median number of packet arrivals it
takes to �ll a �hole� in a TCP byte-stream is 1.

Since Retina's behavior is derived from the subscription, we can
tightly interlace the processing logic to conserve work for tra�c
that actually pertains to the user. Rather thanreconstructingbyte-
streams by copying payloads into a separate receive bu�er, Retina
only reorderspackets as they arrive. We track the next expected
sequence number in each �ow, and immediately send packets that
match the expected sequence downstream for further processing.
Out-of-order packets are stored by reference in a con�gurable-
length ring-bu�er, which is �ushed when the next expected segment
arrives. By default, we use 500 packets as the maximum out-of-order
capacity, which can be adjusted based on available memory and
expected packet loss on the network. This fast, common-case ap-
proach to stream-reassembly avoids unnecessary computation and
memory on streams that do not ful�ll the user's subscription, allow-
ing most packets to simply �pass through� the stream reassembler.

Application-layer Parsing. Retina parses connections accord-
ing to a subscription-speci�c state machine derived from both the �l-
ter and the subscribed data type, an approach that prevents wasteful
computation from parsing or reassembling data no longer needed
for the subscription. For example, if a user is interested in analyz-
ing raw packets associated with HTTP connections, we can stop
reordering �ows after identifying the protocol as it is su�cient to
simply track the connection and deliver each packet. If a user is
subscribed to TLS handshakes, we can even stop processing traf-
�c mid-connection as there is no reason to continue tracking the
encrypted TCP connection after the initial handshake.

All connections transition through four possible states (Figure 4),
which indicate whether Retina shouldProbe the connection for
protocol messages,Parse the application-layer protocol,Track
the connection without parsing, orDelete the entire connection
from the state table. The connection �lter and session �lter are
choice pseudostates that split transitions according to the output of
the �lter, and determine when connections can stop being parsed,
reassembled, or tracked altogether. Retina automatically derives the
state transitions according to parsing behavior de�ned in protocol
modules, as well as output behavior de�ned in subscription modules.
This design avoids wasting memory and CPU cycles on connections
that no longer ful�ll the subscription, enabling Retina to better serve
connections that do require additional processing.

To illustrate this, we show the state diagrams for two example
subscriptions in Figure 4: one for raw packets in HTTP connec-
tions, and the other for transcripts of TLS handshakes with �.com�
domains. In the �rst example (Figure 4a), Retina bu�ers incoming
packets while probing for HTTP messages. Connections that match
the HTTP connection �lter are checked against the session �lter
(which in this case defaults toTrue since the connection �lter is
terminal, recall from Section 4.1). On a �lter match, Retina runs the
callback on any bu�ered packets and transitions the connection to

6

(a) Packets in HTTP connections (b) TLS handshakes with domains ending in .com

Figure 4: Subscription-Speci�c Connection State Diagrams� Retina automatically derives state transitions to e�ciently parse connections according to
the �lter and subscription type. Each state dictates the parsing behavior for the connection, and dashed lines indicate opportunities to discard connections
before they naturally terminate.

Track, allowing it to bypass parsing on remaining packets in the
connection. By comparison, in Figure 4b, Retina probes for TLS pro-
tocol messages and internally manages TLS state. Connections that
fail to match the TLS connection �lter (which can happen as early
as the Client Hello) are immediately dropped, and likewise for those
that do not match the session �ltertls.sni ~' .*\\.com$ ' . On a
full �lter match, Retina runs the callback on the parsed handshake
transcript and removes the connection before it naturally termi-
nates. We emphasize that these state transitions are automatically
derived by the framework to halt redundant parsing and remove
connection state where possible, allowing Retina to accommodate
large amounts of tra�c while remaining �exible over di�erent
subscription types.

5.3 Callback Execution
Callbacks are closures that de�ne the user-level processing logic
to be performed against subscribed network data. Retina transfers
ownership2 of the data from the core framework to the callback,
providing the user with �exibility to write arbitrary analysis func-
tions in a general purpose programming language. By building
on Rust, Retina provides memory safety guarantees that prevent
user-de�ned code from leaking memory or crashing the framework.
Additionally, it allows users to easily take advantage of Rust's ex-
tensive ecosystem of third-party libraries [21], all within a uni�ed
processing environment. This signi�cantly reduces development
overhead and allows Retina to run user code alongside the data
collection infrastructure without context switching or placing seri-
alized data in an external queue.

Callbacks are implemented inline rather than in a separate thread,
which enables e�cient execution without cross-core communi-
cation. As with any real-time system, however, callbacks cannot
perform arbitrarily long computation. To some extent, expensive op-
erations can be absorbed by packet receive queues without stalling
the processing pipeline. Retina does provide logs and real-time
monitoring of packet loss, throughput, and memory usage that
can be used as feedback to adjust the �lter or improve callback
e�ciency if needed. For instance, if an application is writing data
to disk on each callback but is not able to keep up with the ingress
tra�c rate (i.e., incurs sustained non-zero packet loss), the user may
consider using a bu�ered writer, increasing the number of cores, or
even narrowing the �lter. We evaluate Retina's performance with
callbacks of varying complexity in Section 6.1, but leave support
for alternative execution models to future work.

2Ownership is a unique feature of Rust that enables the compiler to ensure memory
safety at compile time.

6 PERFORMANCE EVALUATION
In this section, we evaluate Retina's performance, and demonstrate
its ability to processover 100 Gbps of real-world tra�cfor a variety
of analysis applications on a single commodity server. We show that
Retina outperforms popular network monitoring tools by sustaining
5�100 times higher tra�c rates with zero packet loss, and can
be used for long-term analysis of high volume networks without
exhausting memory.

Hardware Setup. We perform our evaluations on a dual Xeon
Gold 6248R 3GHz CPU (24 cores), with 384 GB of memory and two
100 GbE Mellanox ConnectX-5 NICs. The ConnectX-5 is a standard
100 GbE �dumb� NIC frequently used in prior work [7,34,56,57,72],
but we note that Retina supports other DPDK-compatible NICs as
well (e.g., Intel E810). Both NICs receive a 100 GbE link carrying real-
time tra�c from a large university network, with packets duplicated
across the two links such that we receive double the regular tra�c.
We use this setup to stress test Retinabeyond100 Gbps, as the live
rate on a single link rarely exceeds 75 Gbps at peak times during
the day. Despite using a dual-socket server, we restrict ourselves to
using cores from only one CPU. We keep hyper-threading enabled
but only use one thread per physical core.

Monitoring Environment. Retina targets high-volume, real-
world networks. As such, we run our evaluations on live tra�c
from a large university campus network, unless otherwise stated.
Due to storage limitations, it is infeasible to capture a large enough
packet trace to properly evaluate Retina against realistic work-
loads for more than a few seconds at 100 Gbps. Open-source tra�c
generators like DPDK Pktgen [89] and TRex [78] are unable to
synthetically generate a realistic distribution of �ows with proper
payloads at line rate either. While using real tra�c exactly matches
our intended use-case, it is inherently inconsistent and di�cult to
control for experiments. We combat this by running experiments
temporally close to each other and running multiple trials where
possible. We summarize several features of our network tra�c in
Appendix C.

Ethical Considerations. As part of our evaluation, we measured
whether Retina was capable of processing high-speed tra�c on our
campus network. This analysis was approved by our university's
privacy and security o�ce. We did not investigate human behavior,
surface or investigate any individual �ows or IP addresses, or store
any tra�c or individual records to disk. We restricted all analysis
to aggregate network statistics directly output by Retina. The tap
setup only saw a copy of tra�c to prevent impact on network users

7

(a) Raw Packets (b) TCP Connection Records (c) TLS Handshakes

Figure 5: Zero Packet Loss Processing Throughput� We use CPU cycles per callback as a proxy for callback complexity. For all three subscription types,
Retina is able to support more than 160 Gbps ingress rates on a single multi-core CPU. We also report the approximate packets-per-second using the average
packet size on our network (895 B). We emphasize that variations above 100 Gbps are due to the ingress tra�c rate at the time of the experiment (which we
are unable to control), and should therefore be interpreted as �at least 100 Gbps�.

in the event of a system failure. The server used was deployed
in partnership with our campus networking and security teams
using the same security procedures as other production network
equipment in order to ensure that we did not increase the attack
surface of users on campus.

6.1 End-to-End Throughput
In this section, we evaluate Retina's end-to-end processing through-
put. Since we accommodate a wide variety of use cases, there is
signi�cant variation that can occur depending on the �lter, the
data representation, and the complexity of the callback. We �rst
evaluate Retina over three subscription types: raw unordered pack-
ets, TCP connection records, and parsed TLS handshakes, each of
which represents one of the three supported data abstraction levels
(Section 3.2.2). To approximate callback complexity, we busy loop
for a set number of CPU cycles within the callback function.
Setup. Since we cannot control the ingress tra�c rate on the
observed network, we adjust the rate of tra�c that reaches the
processing cores by modifying the NIC's RSS redirection table
to direct random four-tuples to a separate �sink� core that drops
all received packets. This sink core is not central to the Retina
framework, but allows us to measure the e�ective ingress rate at
the CPU without sacri�cing �ow consistency. This technique can
optionally be used to sample tra�c for extremely heavy workloads,
but none of our applications have required us to do so (Section 7).
Unfortunately, �ow sampling cannot be enabled with hardware
�ow rules, so we disable hardware �ltering to give a lower bound
on the maximum throughputs measured in this experiment.

For each trial, we start at the full ingress tra�c rate and slowly
increase the percentage of �ows dropped by the NIC until we ob-
serve zero packet loss for �ve minutes (enough to reach steady-state
given our default inactivity timeouts). We repeat trials until either
(1) the maximum zero-loss processing throughput is lower than
the total ingress tra�c rate, or (2) the throughput saturates the
ingress link at above 100 Gbps. The dynamic nature of the input
tra�c makes it hard to �nd a stable comparison point between
con�gurations that saturate the ingress rate, so we choose 100 Gbps
as the target threshold. As such, any variations above this threshold

should be viewed as an artifact of the tra�c rate at the time of the
experiment rather than as a function of the number of cores or the
complexity of the callback.
Results. Figure 5 reports the maximum throughputs sustained
with no packet drops. As a baseline, Retina is able to capture all
packets on the network and run an empty callback with just two
cores at over 162 Gbps. Unsurprisingly, the maximum throughput
decreases as more time is spent analyzing each packet, with per-
packet workloads that exceed 100K cycles incurring non-zero loss.
Using just 8 cores, Retina is able to reassemble and process all TCP
connection records from at least 127 Gbps of input tra�c, and with
16 cores for more complex (100K+ cycles) processing. For context,
logging connection records to a shared �le takes around 12K cy-
cles on our platform. Naturally, there are far fewer connections
than individual packets, enabling higher maximum tra�c rates for
large per-callback workloads. When subscribed to TCP connec-
tion records, Retina proactively drops all non-TCP packets (30% of
all packets on our network, Appendix C) and bypasses redundant
payload processing.

Analyzing all TLS handshakes can be achieved using just 8 cores
with ingress tra�c rates exceeding 160 Gbps, even for heavy per-
handshake workloads. Although subscriptions for TLS handshakes
require application-layer parsing, Retina's �ltering system automat-
ically discards non-TLS connections as soon as they are detected
and drops remaining packets in TLS streams that arrive after the
handshake. By design, no CPU cycles are wasted reassembling or
parsing packets that will never ful�ll the subscription.

6.2 Comparison with Optimized IDSes
We compare Retina's performance to Zeek [68], Snort [73], and Suri-
cata [36], popular intrusion detection and monitoring platforms
that are frequently employed to ask research and operational ques-
tions on networks. These are open-source tools that many users are
familiar with, and are some of the few existing platforms that can be
adapted to various analysis tasks with relative ease. While not direct
replacements (Retina is not an IDS), they provide similar support
for stream reassembly and application-layer parsing, unlike purely
packet-oriented frameworks like FastClick [8], BESS [46], VPP [6],

8

	Abstract
	1 Introduction
	2 Design Goals
	3 Retina Analysis Framework
	3.1 System Overview
	3.2 Subscription Programming Model
	3.3 Framework Extensibility

	4 Filter Decomposition
	4.1 Generating Multi-Layer Filters

	5 Data Reconstruction
	5.1 Stateless Packet Processing
	5.2 Stateful Connection Processing
	5.3 Callback Execution

	6 Performance Evaluation
	6.1 End-to-End Throughput
	6.2 Comparison with Optimized IDSes
	6.3 Multi-Layer Filtering
	6.4 State Management

	7 Versatility
	7.1 Cryptographic Anomalies
	7.2 Anonymized Packet Analysis
	7.3 Feature Extraction for Model Inference

	8 Related Work
	9 Conclusion
	References
	A Module Extensibility
	A.1 Protocol Modules
	A.2 Subscription Modules

	B Filter Code Compilation
	C Network Characteristics

